
姓名:张健
职称:教授、研究员
Email: yjnkyy@ntu.edu.cn
学历及学术经历:
博导,现任365英国上市科研副院长。先后入选江苏省第四期、第五期“333高层次人才培养工程”,江苏省第十二批“六大人才高峰”培养对象。市第七届青年科技奖获得者,市第八届优秀科技工作者。兼任南通市观赏植物遗传育种重点实验室主任,中国林学会盐碱地分会理事,江苏省植物学会理事,南通市农学会副理事长等职,《林业科学》编委,国内外多家知名期刊的特邀审稿人和国家重点研发计划及高层次人才答辩评审专家。
2010年以来主持国家自然科学基金、中央财政、省重点研发、省农业自主创新,省“六大高峰人才”等省级以上项目15项,已获国家发明专利授权32项(第一发明人14项),国家林业局植物新品种权2项,发表论文100余篇(含SCI收录第一/通讯作者50余篇),获教育部高等学校科技进步一等奖、国家林业局梁希林业科学技术二等奖、国家林草局梁希林业技术发明二等奖、江苏省科技进步三等奖、全国商业科技进步一等奖等奖项。
主讲本科生《生态学》和《生物学知识产权保护》。
承担的主要课题(2018年以来):
1.国家自然科学基金面上项目:基于异速生长理论的旱柳根系耐盐基因网络枢纽发掘(31971681),2020.01-2023.12,58万元,主持;
2.中央财政林业改革发展资金项目:淮河流域低湿滩地低效林改造与固碳增汇模式示范推广(苏[2025]TG12),2025.01-2027.06,80万元,主持;
3.中央财政林业改革发展资金项目:红叶珍贵苗木繁育核心技术集成示范与推广(苏[2021]TG03),2021.01-2023.12,60万元,主持;
4.江苏省重点研发计划(现代农业)重点项目,基于耐盐、色叶基因检测聚合的紫薇新品种选育(BE2018326),2018.07-2021.06,150万元,主持;
5.江苏林业科技创新与推广项目:典型常绿珍贵乡土树种的定向培育与节本化试验研究(LYKJ[2021]11),2021.07-2023.06,40万元,主持;
6.江苏林业科技创新与推广项目:雄性窄冠速生乔木柳用材品种培育与栽培应用(LYKJ[2018]36),2018.10-2020.09,40万元,主持;
7.江苏林业科技创新与推广项目:江苏沿海盐碱地固碳造林柳树品种选育与林菌增汇模式构建示范(LYKJ[2023]02),2023.09-2026.09,70万元,共同主持;
8.江苏省农业科技自主创新资金项目:苏中沿海滩涂菌草资源复合利用与互作型林草立体种植技术创新(CX19(3121)),2019.07-2021.06,40万元,共同主持;
9. 南通市自然科学基金:基于抗逆枢纽基因发掘的柳树分子育种技术体系构建与利用(JC2023104),2023.09-2026.08,8万元,主持。
10.南通市自然资源和规划局委托项目:南通市林木种质资源保护和利用规划,2020.12-2021.03,18.2万元,主持。
获奖情况:
1.2014年教育部科技进步一等奖;
2.2016年国家林业局梁希林业技术科技二等奖;
3.2016年江苏省科技进步三等奖;
4. 2023年国家林草局梁希林业技术奖技术发明二等奖;
5. 2023年全国商业科技进步一等奖;
6. 2025年全国商业技术发明二等奖。
主要研究领域:
1.园林植物抗逆分子调控机制与育种;
2.林木生态碳汇提升技术研发。
第一发明人授权发明专利
1.一种刺孔抽真空诱导柳树染色体加倍的装置和方法(ZL202310187247.8)
2.一种秋水仙素变温诱导柳树染色体加倍的方法(ZL202210206498.1)
3.一种灌木柳促成开花的方法(ZL202010932305.1)
4.旱柳抗逆快速进化基因的发掘方法(ZL202111128157.9)
5.一种基于电阻值快速评价柳树品种耐盐性的方法(ZL202010815719.6)
6.耐淹柳树新品种快速育种方法(ZL202010495073.8)
7.旱柳耐盐枢纽基因的发掘方法(ZL201910893406.X)
8.基于基因检测聚合选育耐盐色叶紫薇的方法(ZL201810471345.3)
9.柳树沿海滩涂耐盐性早期鉴定方法(ZL201210160422.6)
10.一种保护地多功能用植物耐盐性测定盐池(ZL201510087647.7)
11.江苏沿海滩涂降盐的工程综合改良法与景观模式(ZL201510476565.1)
12.沿海盐碱地柳树直插成苗方法(ZL201110037206.8)
13.促进柳树杂交的方法(ZL201110135595.8)
14.挪威枫种子发芽方法(ZL200910026689.4)
2020年以来代表性论文(第一/通讯作者):
1.Chen Y, Deng M, Huang Q, et al. SmDREB A1‐10 Is Required for SmTTF30‐Mediated Hypoxia Stress Tolerance in Salix matsudana[J]. Plant, Cell & Environment, 2025, 48(6): 4415-4429.
2.Wei H, Lu Z, Xue C, et al. Comprehensive analysis of the LTPG gene family in willow: Identification, expression profiling, and stress response[J]. International Journal of Biological Macromolecules, 2025: 139600.
3.Xu T, Wei H, Yang P, et al. Genome-wide identification of CML gene family in Salix matsudana and functional verification of SmCML56 in tolerance to salts tress[J]. Plant Physiology and Biochemistry, 2025,221: 109600.
4.Wei H, Cao Y, Yang P, et al. Unraveling the adaptive evolution and functional diversification of Rab GTPases in Salix matsudana under salt condition[J]. International Journal of Biological Macromolecules, 2025: 143615.
5.Wei H, Cao Y, Yang P, et al. Comprehensive analysis of raffinose family oligosaccharide metabolism genes in Salix matsudana: Expression patterns and roles in abiotic stress adaptation[J]. Industrial Crops and Products, 2025, 230: 121127.
6.Yanhong C, Zhenkun Y, Jian Z. Combined waterlogging/Submergence and salinity stress in woody plants: Current understanding and future perspectives[J]. Plant and Soil, 2025: 1-27.
7.Yu, C., Ding, Z., Yuan, T., (2024). Morphological, physiological, and molecular bases of salt tolerance in crape myrtle (Lagerstroemia indica). Agriculture, 14(12):2267.
8.Wei H, Chen J, Lu Z, et al. A systematic analysis of GASA family members in the Salix matsudana genome: Characterization, expression profile, and putative function in antioxidation[J]. Industrial Crops and Products, 2024, 220: 119264.
9.Wei H, Xu T, Luo C, et al. Salix matsudana fatty acid desaturases: Identification, classification, evolution, and expression profiles for development and stress tolerances[J]. International Journal of Biological Macromolecules, 2024: 134574.
10.Wei, H., Xu, T., Lu, Z., et al. Comprehensive identification of PIN and PILS in crape myrtle genomes reveals their putative functions in bud-to-branch development and callus generation[J]. Scientia Horticulturae, 2024, 338, 113694.
11.Wei H, Chen J, Zhang X, et al. Characterization, expression pattern, and function analysis of gibberellin oxidases in Salix matsudana[J]. International Journal of Biological Macromolecules, 2024: 131095.
12.Yu C, Liu G, Qin J, et al. Genomic and transcriptomic studies on flavonoid biosynthesis in Lagerstroemia indica[J]. BMC Plant Biology, 2024, 24(1): 171.
13.Wei H, Chen J, Zhang X, et al. Comprehensive analysis of annexin gene family and its expression in response to branching architecture and salt stress in crape myrtle[J]. BMC Plant Biology, 2024, 24(1): 78.
14.Wei H, Chen J, Lu Z, et al. Crape myrtle LiGAoxs displaying activities of gibberellin oxidases respond to branching architecture[J]. Plant Physiology and Biochemistry, 2024, 212: 108738.
15.Wei H, Chen J, Lu Z, et al. Transcriptome analysis reveals critical genes and pathways of regulating the branching architecture of Lagerstroemia Indica in response to gravity signal[J]. Scientia Horticulturae, 2024, 331: 113163.
16.Chen, Y, Huang, Q, Hua X, et al. A homolog of AtCBFs, SmDREB A1-4, positively regulates salt stress tolerance in Arabidopsis thaliana and Salix matsudana[J]. Plant Physiology and Biochemistry,2023, 202: 107963.
17.Huang Q, Hua X, Zhang Q, et al. Identification and functional verification of salt tolerance hub genes in Salix matsudana based on QTL and transcriptome analysis[J]. Environmental and Experimental Botany, 2023, 215: 105470.
18.Chen Y, Dai Y, Li Y, et al. Overexpression of the Salix matsudanaSmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5[J]. BMC Plant Biology, 2022, 22(1): 1-17.
19.Zhong F, Fan X, Ji W, et alSoil fungal community composition and diversity of culturable endophytic fungi from plant roots in the reclaimed area of the eastern coast of China[J]. Journal of Fungi, 2022, 8(2): 124.
20.Liu G, Li Y, Gao J, et al. Detecting the different responses of roots and shoots to gravity in Salix matsudana (Koidz)[J]. Forests, 2021, 12(12): 1715.
21.Zhang J, Yuan H, Li Y, et al. Genome sequencing and phylogenetic analysis of allotetraploid Salix matsudana Koidz[J]. Horticulture Research, 2020, 7(1):11.

